@air
2025-03-25

Standard for water vapor content and pressure dew point of industrial compressed air

The water vapor content and pressure dew point standards of industrial compressed air are key parameters affecting the quality of compressed air and equipment safety. Their standard system and industry application specifications are as follows:

1. Definition and grading of core standards

  1. Definition of pressure dew point
    The pressure dew point is the critical temperature at which compressed air cools down to water vapor saturation and liquid water precipitates out under constant pressure, in ° C. The lower the value, the drier the air.

  2. National standard classification (GB/T 13277.1-2023)
    The compressed air is divided into six levels according to the dew point temperature, corresponding to different water vapor contents:

    • Grade 1: Dew point ≤-70℃, water vapor content ≤2.598 ppmv (electronics industry)
    • Grade 2: Dew point ≤-40℃, water vapor content ≤127.34 ppmv (sterile pharmaceutical)
    • Grade 3: Dew point ≤-20℃, water vapor content ≤1024.22 ppmv (general food and drugs)
    • Grade 4: Dew point ≤+3℃, water vapor content ≤7537 ppmv
    • Level 5: Dew point ≤+7℃, water vapor content ≤9987 ppmv
    • level 6: Dew point ≤+10℃, water vapor content ≤12267 ppmv

2. International standards and industry norms

  1. ISO 8573-1 standard
    The International Organization for Standardization stipulates that the water vapor content in compressed air is expressed as dew point temperature or mass concentration (g/m³). Industry application examples:
    • semiconductor: Dew point ≤-70℃ (Level 1)
    • pharmaceutical: Dew point ≤-40℃ (Level 2) or-20℃ (Level 3)
    • general manufacturing: Dew point ≤0℃ (Level 4)
  2. ASME and ANSI Standards
    • American National Standard ANSI/ISA-7.0.01-1996 requires:
      • Dry air dew point ≤-40℃
      • Clean air dew point ≤-23℃

3. Industry application and testing specifications

  1. industry differences
    • Semiconductor/Electronics: Ultra-low dew point (≤-80℃ or even-110℃) is required to prevent water vapor from corroding precision components.
    • medicine/food: Dew point ≤-40℃ or-20℃ to avoid water vapor polluting the product.
    • general industrial: Dew point ≤0℃, meeting the needs of conventional pneumatic tools.
  2. Testing and calibration
    • measurement tool: Use high-precision dew point meters (such as QCM sensor technology) to ensure ±2 ° C accuracy.
    • conversion rule: Pressure dew point and atmospheric dew point need to be converted through temperature compensation, and industrial testing is often carried out in mg/m³.
  3. device configuration
    • Drying equipment selection
      • Cold drying machine: suitable for grade 4 and below (dew point ≤3℃).
      • Dryer: Suitable for low dew point requirements (e.g., level 1-3).
    • temperature control: Configure aftercooler to reduce exhaust temperature and improve drying efficiency.

4. Significance and implementation points of standards

  1. quality control
    High dew points can lead to pipeline corrosion, product contamination (such as drug agglomeration) and equipment failure (such as ice clogging), which requires regular monitoring.

  2. energy-saving optimization
    Avoid energy waste by accurately controlling dryer output, such as monitoring with a FixInst dew point meter.

  3. compliance of
    The pharmaceutical industry needs to meet GMP certification requirements, and the electronics industry needs to meet ISO 14644 clean room standards.

summary

The water vapor content and pressure dew point standards for industrial compressed air have formed a complete system from basic classification to industrial application. During implementation, it is necessary to select equipment based on specific scenarios, calibrate instruments regularly, and refer to international/domestic standards (such as ISO 8573, GB/T 13277) to ensure compressed air quality and system safety.

Welcome!

Related Articles:
@air
2025-05-28

Why does a new air compressor need to be maintained in 500 hours?

Official explanation on the initial maintenance cycle of new air compressors As the core power equipment in the industrial field, its operating stability is directly related to the reliability of the production system. After new equipment is put into use, manufacturers generally recommend operating in 500…

@air
2025-03-19

Does the screw air compressor motor stop

Whether the motor of the screw air compressor continues to run depends on its control mode and actual work requirements. The following is a detailed analysis: 1. regular working mode loading/Unloading Cycle: most screw compressors manage the operating state through pressure switches or controllers: loading Status: When the system pressure is lower than the set […]

@air
2025-04-23

What lubrication does oil-free air compressor rely on?

Oil-free air compressors achieve efficient and clean operation through special lubrication methods, mainly relying on the following lubrication technologies: 1. Dry lubrication principle: Apply solid lubricating materials (such as polytetrafluoroethylene, PTFE) on the surface of key components of the compressor. …

@air
2025-05-29

What are the applications of air compressors in railways?

Analysis of the application of air compressors in the railway industry In complex systems in the railway industry, air compressors, as a key power source, are deeply involved in many core aspects such as train operation, signal control, and station facility maintenance. Their stability and efficiency directly affect…

@air
2025-03-12

What is the function of permanent magnet air compressor

Permanent magnet air compressors play a variety of important roles in industrial production. The following is a detailed summary: 1. Provide stable and high-quality compressed air Permanent magnet air compressors use permanent magnet synchronous motor to drive the compressor to compress air through components such as blades or screws. This compressor can provide stable and […]